Test with PDF

Share your details and we'll email you our Publication

Authors

Avivit Cahn

Avi Shoshan

Tal Sagiv

Rachel Yesharim

Ran Goshen

Varda Shalev

Itamar Raz

Share This Class:

Abstract

October 8, 2018

How AI Will Impact Diabetes Care

In this study led by Hadassah University Hospital endocrinologist Dr. Avivit Cahn, an algorithm developed by Medial EarlySign data scientists was used to identify patients with prediabetes at highest risk of progressing to diabetes within one (1) year.

Objectives:  This study sought to determine whether a machine-learning model could improve the prediction of incident diabetes utilizing patient data from electronic medical records, compared to a logistic regression model.

Background: Identifying patients at high risk of progression from prediabetes to diabetes can help prioritize and target delivery of limited diabetes prevention program resources, while avoiding the treatment of patients identified as being at low risk.

Methods: A machine-learning model predicting the progression from prediabetes to diabetes was developed using a gradient boosted trees model. The model was trained on data from the UK (THIN) database cohort, and validated with internal and external (Canadian AppleTree and Israeli Maccabi Health Services) data sets that were not used for training. The model’s predictive ability was compared with that of a logistic regression model within each data set.

This peer-reviewed study in Diabetes Metabolism Research and Reviews gives healthcare systems, endocrinologists, primary care physicians, and population health managers insights on how prioritizing diabetes prevention programs for prediabetic patients on high-risk trajectories can be more cost effective than offering similar resources to those at lower risk.

Highlights include:

Prediction of progression from prediabetes to diabetes: Development and validation of a machine learning model, Avivit Cahn, Avi Shoshan, Tal Sagiv, Rachel Yesharim, Ran Goshen, Varda Shalev, Itamar Raz, Diabetes Metab Res Rev. 2020 Jan 14:e3252. doi: 10.1002/dmrr.3252; PubMed id: 31943669

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent eu orci faucibus orci malesuada semper eget non tellus. Cras sed dignissim purus. Mauris varius neque leo, eu pellentesque justo venenatis et. Sed ultricies risus non turpis tempus, nec  nulla suscipit. In comdo urna eu turpis accumsan, et viverra mauris fringillaCras interdum 

Video 48 Min  + 2 Min read to complete

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent eu orci faucibus orci malesuada semper eget non tellus. Cras sed dignissim purus. Mauris varius neque leo, eu pellentesque justo venenatis et. Sed ultricies risus non turpis tempus, nec  nulla suscipit. In comdo urna eu turpis accumsan, et viverra mauris fringillaCras interdum 

Video 48 Min  + 2 Min read to complete

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent eu orci faucibus orci malesuada semper eget non tellus. Cras sed dignissim purus. Mauris varius neque leo, eu pellentesque justo venenatis et. Sed ultricies risus non turpis tempus, nec  nulla suscipit. In comdo urna eu turpis accumsan, et viverra mauris fringillaCras interdum 

Video 48 Min  + 2 Min read to complete

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent eu orci faucibus orci malesuada semper eget non tellus. Cras sed dignissim purus. Mauris varius neque leo, eu pellentesque justo venenatis et. Sed ultricies risus non turpis tempus, nec  nulla suscipit. In comdo urna eu turpis accumsan, et viverra mauris fringillaCras interdum 

Video 48 Min  + 2 Min read to complete

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent eu orci faucibus orci malesuada semper eget non tellus. Cras sed dignissim purus. Mauris varius neque leo, eu pellentesque justo venenatis et. Sed ultricies risus non turpis tempus, nec  nulla suscipit. In comdo urna eu turpis accumsan, et viverra mauris fringillaCras interdum 

Video 48 Min  + 2 Min read to complete

What people are saying

Are You Ready To Start?