News

Home > News & Events > PLOS ONE Publishes Paper on MES Performance Analysis of Machine Learning to Identify Individuals at High Risk for Colorectal Cancer

PLOS ONE Publishes Paper on MES Performance Analysis of Machine Learning to Identify Individuals at High Risk for Colorectal Cancer

PLOS ONE Publishes Paper on MES Performance Analysis of Machine Learning to Identify Individuals at High Risk for Colorectal Cancer


February 9, 2017

Abstract

Individuals with colorectal cancer (CRC) have a tendency to intestinal bleeding which may result in mild to severe iron deficiency anemia, but for many colon cancer patients hematological abnormalities are subtle. The fecal occult blood test (FOBT) is used as a pre-screening test whereby those with a positive FOBT are referred to colonscopy. We sought to determine if information contained in the complete blood count (CBC) report coud be processed automatically and used to predict the presence of occult colorectal cancer (CRC) in the setting of a large health services plan. Using the health records of the Maccabi Health Services (MHS) we reviewed CBC reports for 112,584 study subjects of whom 133 were diagnosed with CRC in 2008 and analysed these with the MeScore tool. The odds ratio for being diagnosed with CRC in 2008 was calculated with regards to the MeScore, using cutoff levels of 97% and 99% percentiles. For individuals in the highest one percentile, the odds ratio for CRC was 21.8 (95% CI 13.8 to 34.2). For the majority of the individuals with cancer, CRC was not suspected at the time of the blood draw. Frequent use of anticoagulants, the presence of other gastrointestinal pathologies and non-GI malignancies were assocaitged with false positive MeScores. The MeScore can help identify individuals in the population who would benefit most from CRC screening, including those with no clinical signs or symptoms of CRC.

 

View the full paper here.